What disease does this patient have? A large-scale open domain question answering dataset from medical exams

152Citations
Citations of this article
130Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Open domain question answering (OpenQA) tasks have been recently attracting more and more attention from the natural language processing (NLP) community. In this work, we present the first free-form multiple-choice OpenQA dataset for solving medical problems, MEDQA, collected from the professional medical board exams. It covers three languages: English, simplified Chinese, and traditional Chinese, and contains 12,723, 34,251, and 14,123 questions for the three languages, respectively. We implement both rule-based and popular neural methods by sequentially combining a document retriever and a machine comprehension model. Through experiments, we find that even the current best method can only achieve 36.7%, 42.0%, and 70.1% of test accuracy on the English, traditional Chinese, and simplified Chinese questions, respectively. We expect MEDQA to present great challenges to existing OpenQA systems and hope that it can serve as a platform to promote much stronger OpenQA models from the NLP community in the future.

Cite

CITATION STYLE

APA

Jin, D., Pan, E., Oufattole, N., Weng, W. H., Fang, H., & Szolovits, P. (2021). What disease does this patient have? A large-scale open domain question answering dataset from medical exams. Applied Sciences (Switzerland), 11(14). https://doi.org/10.3390/app11146421

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free