Rapid and label-free immunosensing of Shiga toxin subtypes with surface plasmon resonance imaging

8Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

Shiga toxin-producing Escherichia coli (STEC) are responsible for gastrointestinal diseases reported in numerous outbreaks around the world as well as in the United States. Current detection methods have limitation to implement for rapid field-deployable detection with high volume of samples that are needed for regulatory purposes. Surface plasmon resonance imaging (SPRi) has proved to achieve rapid and label-free screening of multiple pathogens simultaneously, so it was evaluated in this work for the detection of Shiga toxins (Stx1a and Stx2a toxoids were used as the less toxic alternatives to Stx1 and Stx2, respectively). Multiple antibodies (Stx1pAb, Stx1-1mAb, Stx1-2mAb, Stx1d-3mAb, Stx1e-4mAb, Stx2pAb, Stx2-1mAb, Stx2-2mAb, and Stx2-10mAb) were spotted one by one by programed microarrayer, on the same high-throughput biochip with 50-nm gold film through multiple crosslinking and blocking steps to improve the orientation of antibodies on the biochip surface. Shiga toxins were detected based on the SPRi signal difference (DR) between immobilized testing antibodies and immunoglobulin G (IgG) control. Among the antibodies tested, Stx1pAb showed the highest sensitivity for Stx1 toxoid, with the limit of detection (LOD) of 50 ng/mL and detection time of 20 min. Both Stx2-1mAb and Stx2-2mAb exhibited high sensitivity for Stx2 toxoid. Furthermore, gold nanoparticles (GNPs) were used to amplify the SPRi signals of monoclonal antibodies in a sandwich platform. The LOD reached the level of picogram (pg)/mL with the help of GNP-antibody conjugate. This result proved that SPRi biochip with selected antibodies has the potential for rapid, high-throughput and multiplex detection of Shiga toxins.

Cite

CITATION STYLE

APA

Wang, B., Park, B., Chen, J., & He, X. (2020). Rapid and label-free immunosensing of Shiga toxin subtypes with surface plasmon resonance imaging. Toxins, 12(5). https://doi.org/10.3390/toxins12050280

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free