Allogeneic and autoimmune islet destruction limits the success of islet transplantation in autoimmune diabetic patients. This study was designed to investigate whether ex vivo gene transfer of viral interleukin-10 (vIL-10) protects BioBreeding (BB) rat islets from autoimmune destruction after transplantation into diabetic BB recipients. Islets were transduced with adenoviral constructs (Ad) expressing the enhanced green fluorescent protein (eGFP), α-1 antitrypsin (AAT) or vIL-10. Transduction efficiency was demonstrated by eGFP-positive cells and vIL-10 production. Islet function was determined in vitro by measuring insulin content and insulin secretion and in vivo by grafting AdvIL-10-transduced islets into syngeneic streptozotocin (SZ)-diabetic, congenic Lewis (LEW.1 W) rats. Finally, gene-modified BB rat islets were grafted into autoimmune diabetic BB rats. Ad-transduction efficiency of islets increased with virus titre and did not interfere with insulin content and insulin secretion. Ad-transduction did not induce Fas on islet cells. AdvIL-10-transduced LEW.1 W rat islets survived permanently in SZ-diabetic LEW.1 W rats. In diabetic BB rats AdvIL-10-transduced BB rat islets were rapidly destroyed. Prolongation of islet culture prior to transplantation improved the survival of gene-modified islets in BB rats. Several genes including those coding for chemokines and other peptides associated with inflammation were down-regulated in islets after prolonged culture, possibly contributing to improved islet graft function in vivo. Islets transduced ex vivo with vIL-10 are principally able to cure SZ-diabetic rats. Autoimmune islet destruction in diabetic BB rats is not prevented by ex vivo vIL-10 gene transfer to grafted islets. Graft survival in autoimmune diabetic rats may be enhanced by improvements in culture conditions prior to transplantation. © 2007 The Authors.
CITATION STYLE
Kuttler, B., Wanka, H., Klöting, N., Gerstmayer, B., Volk, H. D., Sawitzki, B., & Ritter, T. (2007). Ex vivo gene transfer of viral interleukin-10 to BB rat islets: No protection after transplantation to diabetic BB rats. Journal of Cellular and Molecular Medicine, 11(4), 868–880. https://doi.org/10.1111/j.1582-4934.2007.00059.x
Mendeley helps you to discover research relevant for your work.