Catalytic properties of phosphate-coated CuFe2O4 nanoparticles for phenol degradation

20Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Copper ferrite (CuFe2O4) nanoparticles were prepared using the sol-gel autocombustion method and then coated with phosphate using different treatments with H3PO4. The structural and chemical properties of the phosphate-coated CuFe2O4 nanoparticles were controlled by changing the concentration of H3PO4 during the coating process. The prepared nanoparticles were characterized using XRD, FTIR, SEM, and EDS which provided information about the catalysts' structure, chemical composition, purity, and morphology. The catalytic and photocatalytic activities of the phosphate-coated CuFe2O4 samples were tested and evaluated for the degradation of phenol using HPLC. The prepared nanoparticles successfully emerged as excellent heterogeneous Fenton-type catalysts for phenol degradation. The phosphate-coated CuFe2O4 catalysts exhibited a higher catalytic activity compared with the uncoated CuFe2O4 ones. Such a higher catalytic performance can be attributed to enhanced morphological, electronic, and chemical properties of the phosphate-coated CuFe2O4 nanoparticles. Additionally, the phosphate-coated CuFe2O4 nanoparticles also revealed a higher catalytic activity compared with TiO2 nanoparticles. Different experimental conditions were investigated, and complete removal of phenol was achieved under specific conditions.

Cite

CITATION STYLE

APA

Othman, I., Haija, M. A., & Banat, F. (2019). Catalytic properties of phosphate-coated CuFe2O4 nanoparticles for phenol degradation. Journal of Nanomaterials, 2019. https://doi.org/10.1155/2019/3698326

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free