An Efficient Mining for Recommendation System for Academics

  • Akhtar* N
  • et al.
N/ACitations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

At present time huge numbers of research articles are available on World Wide Web in any domain. The research scholar explores a research papers to get the appropriate information and it takes time and effort of the researcher. In this scenario, there is the need for a researcher to search a research based on its research article. In the present paper a method of Knowledge ablation from a collection of research articles, is presented to evolve a system research paper recommendation system (RPRS), which would generate the recommendations for research article based on researcher choice. The RPRS accumulate the knowledge ablated from the pertinent research articles in the form of semantic tree. It accumulates all the literal sub parts with their reckoning in nodes. These parts are arranged based on their types in such a way that the leaf nodes stores the words with its prospect, the higher layer gives details about dictum with its reckoning, next to it an abstract. A Bayesian network is applied to construct a verisimilitude model which would quotation the pertinent tidings from the knowledge tree to construct the recommendation and word would be scored through TF-IDF value.

Cite

CITATION STYLE

APA

Akhtar*, N., & Agarwal, Prof. (Dr. ) D. (2020). An Efficient Mining for Recommendation System for Academics. International Journal of Recent Technology and Engineering (IJRTE), 8(5), 1619–1626. https://doi.org/10.35940/ijrte.e5924.018520

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free