PheProb: Probabilistic phenotyping using diagnosis codes to improve power for genetic association studies

16Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objective Standard approaches for large scale phenotypic screens using electronic health record (EHR) data apply thresholds, such as ≥2 diagnosis codes, to define subjects as having a phenotype. However, the variation in the accuracy of diagnosis codes can impair the power of such screens. Our objective was to develop and evaluate an approach which converts diagnosis codes into a probability of a phenotype (PheProb). We hypothesized that this alternate approach for defining phenotypes would improve power for genetic association studies. Methods The PheProb approach employs unsupervised clustering to separate patients into 2 groups based on diagnosis codes. Subjects are assigned a probability of having the phenotype based on the number of diagnosis codes. This approach was developed using simulated EHR data and tested in a real world EHR cohort. In the latter, we tested the association between low density lipoprotein cholesterol (LDL-C) genetic risk alleles known for association with hyperlipidemia and hyperlipidemia codes (ICD-9 272.x). PheProb and thresholding approaches were compared. Results Among n = 1462 subjects in the real world EHR cohort, the threshold-based p-values for association between the genetic risk score (GRS) and hyperlipidemia were 0.126 (≥1 code), 0.123 (≥2 codes), and 0.142 (≥3 codes). The PheProb approach produced the expected significant association between the GRS and hyperlipidemia: p =.001. Conclusions PheProb improves statistical power for association studies relative to standard thresholding approaches by leveraging information about the phenotype in the billing code counts. The PheProb approach has direct applications where efficient approaches are required, such as in Phenome-Wide Association Studies.

Cite

CITATION STYLE

APA

Sinnott, J. A., Cai, F., Yu, S., Hejblum, B. P., Hong, C., Kohane, I. S., & Liao, K. P. (2018). PheProb: Probabilistic phenotyping using diagnosis codes to improve power for genetic association studies. Journal of the American Medical Informatics Association, 25(10), 1359–1365. https://doi.org/10.1093/jamia/ocy056

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free