Low molecular weight protein-tyrosine phosphatases (LMW-PTPs) are small enzymes that ubiquitously exist in various organisms and play important roles in many biological processes. In Escherichia coli, the LMW-PTP Wzb dephosphorylates the autokinase Wzc, and the Wzc/Wzb pair regulates colanic acid production. However, the substrate recognition mechanism of Wzb is still poorly understood thus far. To elucidate the molecular basis of the catalytic mechanism, we have determined the solution structure of Wzb at high resolution by NMR spectroscopy. The Wzb structure highly resembles that of the typical LMW-PTP fold, suggesting that Wzb may adopt a similar catalytic mechanism with other LMW-PTPs. Nevertheless, in comparison with eukaryotic LMW-PTPs, the absence of an aromatic amino acid at the bottom of the active site significantly alters the molecular surface and implicates Wzb may adopt a novel substrate recognition mechanism. Furthermore, a structure-based multiple sequence alignment suggests that a class of the prokaryotic LMW-PTPs may share a similar substrate recognition mechanism with Wzb. The current studies provide the structural basis for rational drug design against the pathogenic bacteria. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Lescop, E., Hu, Y., Xu, H., Hu, W., Chen, J., Xia, B., & Jin, C. (2006). The solution structure of Escherichia coli Wzb reveals a novel substrate recognition mechanism of prokaryotic low molecular weight protein-tyrosine phosphatases. Journal of Biological Chemistry, 281(28), 19570–19577. https://doi.org/10.1074/jbc.M601263200
Mendeley helps you to discover research relevant for your work.