Impact of COVID-19 on Forecasting Stock Prices: An Integration of Stationary Wavelet Transform and Bidirectional Long Short-Term Memory

53Citations
Citations of this article
143Readers
Mendeley users who have this article in their library.

Abstract

COVID-19 is an infectious disease that mostly affects the respiratory system. At the time of this research being performed, there were more than 1.4 million cases of COVID-19, and one of the biggest anxieties is not just our health, but our livelihoods, too. In this research, authors investigate the impact of COVID-19 on the global economy, more specifically, the impact of COVID-19 on the financial movement of Crude Oil price and three US stock indexes: DJI, S&P 500, and NASDAQ Composite. The proposed system for predicting commodity and stock prices integrates the stationary wavelet transform (SWT) and bidirectional long short-term memory (BDLSTM) networks. Firstly, SWT is used to decompose the data into approximation and detail coefficients. After decomposition, data of Crude Oil price and stock market indexes along with COVID-19 confirmed cases were used as input variables for future price movement forecasting. As a result, the proposed system BDLSTM + WT-ADA achieved satisfactory results in terms of five-day Crude Oil price forecast.

Cite

CITATION STYLE

APA

Štifanić, D., Musulin, J., Miočević, A., Baressi Šegota, S., Šubić, R., & Car, Z. (2020). Impact of COVID-19 on Forecasting Stock Prices: An Integration of Stationary Wavelet Transform and Bidirectional Long Short-Term Memory. Complexity, 2020. https://doi.org/10.1155/2020/1846926

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free