Herein, we report the effect of sonoluminescence and an initial dye concentration on the sonophotocatalysis of TiO2 for the degradation of eosin B, a textile dye. We first investigated the light illuminated during ultrasound irradiation (sonoluminescence) by photographic images, a radical indicator (luminol), and photoluminescence spectra of the detection range of 300–1050 nm. Next, we examined the synergistic effect of sonolysis on photocatalysis by comparing the dye degradation of sonophotocatalysis to that of individual contributions of sonolysis and photocatalysis. Since it was found that the synergist effect is highly engaged with a dye concentration and sonication power, we conducted the comparison test in different concentrations of eosin B (5 and 20 mg/L) and ultrasound powers (35.4, 106.1, and 176.8 W/cm2). When the concentration of dyes was low, negative synergistic effects were found at all ultrasound powers, whereas at the high concentration, positive synergistic effects were observed at high ultrasound power. This difference in synergistic effects was explained by the influence of ultrasound on dynamics of dye adsorption on the TiO2 surface.
CITATION STYLE
Choi, Y., Lee, D., Hong, S., Khan, S., Darya, B., Lee, J. Y., … Cho, S. H. (2020). Investigation of the synergistic effect of sonolysis and photocatalysis of titanium dioxide for organic dye degradation. Catalysts, 10(5). https://doi.org/10.3390/catal10050500
Mendeley helps you to discover research relevant for your work.