Dent disease is an X-linked renal proximal tubulopathy associated with mutations in the chloride channel gene CLCN5. Lowe syndrome, a multisystem disease characterized by renal tubulopathy, congenital cataracts, and mental retardation, is associated with mutations in the gene OCRL1, which encodes a phosphatidylinositol 4,5-bisphosphate (PIP2) 5-phosphatase. Genetic heterogeneity has been suspected in Dent disease, but no other gene for Dent disease has been reported. We studied male probands in 13 families, all of whom met strict criteria for Dent disease but lacked mutations in CLCN5. Linkage analysis in the one large family localized the gene to a candidate region at Xq25-Xq27.1. Sequencing of candidate genes revealed a mutation in the OCRL1 gene. Of the 13 families studied, OCRL1 mutations were found in 5. PIP 2 5-phosphatase activity was markedly reduced in skin fibroblasts cultured from the probands of these five families, and protein expression, measured by western blotting, was reduced or absent. Slit-lamp examinations performed in childhood or adulthood for all five probands showed normal results. Unlike patients with typical Lowe syndrome, none of these patients had metabolic acidosis. Three of the five probands had mild mental retardation, whereas two had no developmental delay or behavioral disturbance. These findings demonstrate that mutations in OCRL1 can occur with the isolated renal phenotype of Dent disease in patients lacking the cataracts, renal tubular acidosis, and neurological abnormalities that are characteristic of Lowe syndrome. This observation confirms genetic heterogeneity in Dent disease and demonstrates more-extensive phenotypic heterogeneity in Lowe syndrome than was previously appreciated. It establishes that the diagnostic criteria for disorders resulting from mutations in the Lowe syndrome gene OCRL1 need to be revised.
CITATION STYLE
Hoopes, R. R., Shrimpton, A. E., Knohl, S. J., Hueber, P., Hoppe, B., Matyus, J., … Scheinman, S. J. (2005). Dent disease with mutations in OCRL1. American Journal of Human Genetics, 76(2), 260–267. https://doi.org/10.1086/427887
Mendeley helps you to discover research relevant for your work.