High intrinsic lattice thermal conductivity in monolayer MoSi2N4

94Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Very recently, a novel two-dimension (2D) MXene, MoSi2N4, was successfully synthesized with excellent ambient stability, high carrier mobility, and moderate band gap (2020 Science 369 670). In this work, the intrinsic lattice thermal conductivity of monolayer MoSi2N4 is predicted by solving the phonon Boltzmann transport equation based on the first-principles calculations. Despite the heavy atomic mass of Mo and complex crystal structure, the monolayer MoSi2N4 unexpectedly exhibits a quite high lattice thermal conductivity over a wide temperature range between 300 to 800 K. At 300 K, its in-plane lattice thermal conductivity is 224 Wm−1 K−1. The detailed analysis indicates that the large group velocities and small anharmonicity are the main reasons for its high lattice thermal conductivity. We also calculate the lattice thermal conductivity of monolayer WSi2N4, which is only a little smaller than that of MoSi2N4. Our findings suggest that monolayer MoSi2N4 and WSi2N4 are potential 2D materials for thermal transport in future nano-electronic devices.

Cite

CITATION STYLE

APA

Yu, J., Zhou, J., Wan, X., & Li, Q. (2021). High intrinsic lattice thermal conductivity in monolayer MoSi2N4. New Journal of Physics, 23(3). https://doi.org/10.1088/1367-2630/abe8f7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free