Enzymatic Hydrolysis Optimization for Preparation of Sea Cucumber (Holothuria scabra) Hydrolysate with an Antiproliferative Effect on the HepG2 Liver Cancer Cell Line and Antioxidant Properties

2Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

The sea cucumber body wall was subjected to enzymatic hydrolysis using papain. The relationship between the enzyme concentration (1–5% w/w protein weight) and hydrolysis time (60–360 min) and the degree of hydrolysis (DH), yield, antioxidant activities, and antiproliferative activity in a HepG2 liver cancer cell line was determined. The surface response methodology showed that the optimum conditions for the enzymatic hydrolysis of sea cucumber were a hydrolysis time of 360 min and 4.3% papain. Under these conditions, a 12.1% yield, 74.52% DH, 89.74% DPPH scavenging activity, 74.92% ABTS scavenging activity, 39.42% H2O2 scavenging activity, 88.71% hydroxyl radical scavenging activity, and 9.89% HepG2 liver cancer cell viability were obtained. The hydrolysate was produced under optimum conditions and characterized in terms of its antiproliferative effect on the HepG2 liver cancer cell line.

Cite

CITATION STYLE

APA

Saiwong, S., Autsavapromporn, N., Siriwoharn, T., Techapun, C., & Wangtueai, S. (2023). Enzymatic Hydrolysis Optimization for Preparation of Sea Cucumber (Holothuria scabra) Hydrolysate with an Antiproliferative Effect on the HepG2 Liver Cancer Cell Line and Antioxidant Properties. International Journal of Molecular Sciences, 24(11). https://doi.org/10.3390/ijms24119491

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free