Intra- and Extracellular Localization of Lignin Peroxidase during the Degradation of Solid Wood and Wood Fragments by Phanerochaete chrysosporium by Using Transmission Electron Microscopy and Immuno-Gold Labeling

  • Daniel G
  • Nilsson T
  • Pettersson B
N/ACitations
Citations of this article
34Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The distribution of lignin peroxidase during degradation of both wood and woody fragments by the white rot fungus Phanerochaete chrysosporium was investigated by using anti-lignin peroxidase in conjunction with postembedding transmission electron microscopy and immuno-gold labeling techniques. The enzyme was localized in the peripheral regions of the fungal cell cytoplasm in association with the cell membrane, fungal cell wall, and extracellular slime materials. In solid wood, lignin peroxidase was detected in low concentrations associated with both superficial and degradation zones within secondary cell walls undergoing fungal attack. A similar but much greater level of extracellular peroxidase activity was associated with wood fragments degraded by the fungus grown under liquid culture conditions optimal for production of the enzyme. Efforts to infiltrate degraded wood pieces with high levels of lignin peroxidase showed the enzyme to be restricted to superficial regions of wood decay and to penetrate wood cell walls only where the wall structure had been modified. In this respect the enzyme was able to penetrate characteristic zones of degradation within the secondary walls of fibers to sites of lignin attack. This suggests a possibility for a close substrate-enzyme association during wood cell wall degradation.

Cite

CITATION STYLE

APA

Daniel, G., Nilsson, T., & Pettersson, B. (1989). Intra- and Extracellular Localization of Lignin Peroxidase during the Degradation of Solid Wood and Wood Fragments by Phanerochaete chrysosporium by Using Transmission Electron Microscopy and Immuno-Gold Labeling. Applied and Environmental Microbiology, 55(4), 871–881. https://doi.org/10.1128/aem.55.4.871-881.1989

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free