Some clusters of galaxies in addition to thermal bremsstrahlung (TB), emit diffuse radiation from the intercluster medium (ICM) at radio, EUV and hard x-ray (HXR) ranges. The radio radiation is due to synchrotron by relativistic electrons, and the inverse Compton (IC) scattering by the cosmic microwave background radiation of the same electrons is the most natural source for the HXR and perhaps the EUV emissions. However, simple estimates give a weaker magnetic field than that suggested by Faraday rotation measurements. Consequently, non-thermal bremsstrahlung (NTB) and TB have also been suggested as sources of these emissions. We show that NTB cannot be the source of the HXRs and that the difficulty with the low magnetic field in the IC model is alleviated if we take into account the effects of observational bias, nonisotropic pitch angle distribution and spectral breaks. We derive a spectrum for the radiating electrons and discuss acceleration scenarios. We show that continuous and in situ acceleration in the ICM of the background thermal electrons requires unreasonably high energy input and acceleration of injected relativistic electrons gives rise to a much flatter spectrum than desired, unless a large fraction of electrons escape the ICM, in which case one obtains EUV and HXR emissions extending well beyond the boundaries of the cluster. A continuous emission by a cooling spectrum resulting from interaction with ICM of electrons accelerated elsewhere also suffers from similar shortcomings. The most likely scenario appears to be an episodic injection-acceleration model, whereby one obtains a time dependent spectrum that for certain phases of its evolution satisfies all the requirements.
CITATION STYLE
Petrosian, V. (2001). On the Nonthermal Emission and Acceleration of Electrons in Coma and Other Clusters of Galaxies. The Astrophysical Journal, 557(2), 560–572. https://doi.org/10.1086/321557
Mendeley helps you to discover research relevant for your work.