Background: Management of uncontrolled symptoms is an important component of quality cancer care. Clinical guidelines are available for optimal symptom management, but are not often integrated into the front lines of care. The use of clinical decision support (CDS) at the point-of-care is an innovative way to incorporate guideline-based symptom management into routine cancer care. Objective: The objective of this study was to develop and evaluate a rule-based CDS system to enable management of multiple symptoms in lung cancer patients at the point-of-care. Methods: This study was conducted in three phases involving a formative evaluation, a system evaluation, and a contextual evaluation of clinical use. In Phase 1, we conducted iterative usability testing of user interface prototypes with patients and health care providers (HCPs) in two thoracic oncology clinics. In Phase 2, we programmed complex algorithms derived from clinical practice guidelines into a rules engine that used Web services to communicate with the end-user application. Unit testing of algorithms was conducted using a stack-traversal tree-spanning methodology to identify all possible permutations of pathways through each algorithm, to validate accuracy. In Phase 3, we evaluated clinical use of the system among patients and HCPs in the two clinics via observations, structured interviews, and questionnaires. Results: In Phase 1, 13 patients and 5 HCPs engaged in two rounds of formative testing, and suggested improvements leading to revisions until overall usability scores met a priori benchmarks. In Phase 2, symptom management algorithms contained between 29 and 1425 decision nodes, resulting in 19 to 3194 unique pathways per algorithm. Unit testing required 240 person-hours, and integration testing required 40 person-hours. In Phase 3, both patients and HCPs found the system usable and acceptable, and offered suggestions for improvements. Conclusions: A rule-based CDS system for complex symptom management was systematically developed and tested. The complexity of the algorithms required extensive development and innovative testing. The Web service-based approach allowed remote access to CDS knowledge, and could enable scaling and sharing of this knowledge to accelerate availability, and reduce duplication of effort. Patients and HCPs found the system to be usable and useful.
CITATION STYLE
Lobach, D. F., Johns, E. B., Halpenny, B., Saunders, T. A., Brzozowski, J., Del Fiol, G., … Cooley, M. E. (2016). Increasing complexity in rule-based clinical decision support: The symptom assessment and management intervention. JMIR Medical Informatics, 4(4). https://doi.org/10.2196/medinform.5728
Mendeley helps you to discover research relevant for your work.