Skip to content

To blank or not to blank? A comparison of the effects of disclosure limitation methods on nonlinear regression estimates

5Citations
Citations of this article
4Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Statistical disclosure limitation is widely used by data collecting institutions to provide safe individual data. However, the choice of the disclosure limitation method severely affects the quality of the data and limit their use for empirical research. In particular, estimators for nonlinear models based on data which are masked by standard disclosure limitation techniques such as blanking or noise addition lead to inconsistent parameter estimates. This paper investigates to what extent appropriate econometric techniques can obtain parameter estimates of the true data generating process, if the data are masked by noise addition or blanking. Comparing three different estimators - calibration method, the SIMEX method and a semiparametric sample selectivity estimator - we produce Monte-Carlo evidence on how the reduction of data quality can be minimized by masking. © Springer-Verlag 2004.

Cite

CITATION STYLE

APA

Lechner, S., & Pohlmeier, W. (2004). To blank or not to blank? A comparison of the effects of disclosure limitation methods on nonlinear regression estimates. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3050, 187–200. https://doi.org/10.1007/978-3-540-25955-8_15

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free