Abstract
We consider the problem whether a permutation of a finite set is uniquely determined by its identification minors. While there exist non-reconstructible permutations of every set with two, three, or four elements, we show that every permutation of a finite set with at least five elements is reconstructible from its identification minors. Moreover, we provide an algorithm for recovering a permutation from its deck. We also discuss a generalization of this reconstruction problem, as well as the related set-reconstruction problem.
Author supplied keywords
Cite
CITATION STYLE
Lehtonen, E. (2015). Reconstructing permutations from identification minors. Electronic Journal of Combinatorics, 22(4). https://doi.org/10.37236/5353
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.