The unique benefits of Fabry-Pérot resonators as frequency-stable reference cavities and as an efficient interface between atoms and photons make them an indispensable resource for emerging photonic technologies. To bring these performance benefits to next-generation communications, computation, and time-keeping systems, it will be necessary to develop strategies to integrate compact Fabry-Pérot resonators with photonic integrated circuits. In this paper, we demonstrate a novel reflection cancellation circuit that utilizes a numerically optimized multi-port polarization-splitting grating coupler to efficiently interface high-finesse Fabry-Pérot resonators with a silicon photonic circuit. This circuit interface produces a spatial separation of the incident and reflected waves, as required for on-chip Pound-Drever-Hall frequency locking, while also suppressing unwanted back reflections from the Fabry-Pérot resonator. Using inverse design principles, we design and fabricate a polarization-splitting grating coupler that achieves 55% coupling efficiency. This design realizes an insertion loss of 5.8 dB for the circuit interface and more than 9 dB of back reflection suppression, and we demonstrate the versatility of this system by using it to interface several reflective off-chip devices.
CITATION STYLE
Cheng, H., Jin, N., Dai, Z., Xiang, C., Guo, J., Zhou, Y., … Rakich, P. (2023). A novel approach to interface high-Q Fabry-Pérot resonators with photonic circuits. APL Photonics, 8(11). https://doi.org/10.1063/5.0174384
Mendeley helps you to discover research relevant for your work.