Making sense of multivariate community responses in global change experiments

2Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ecological communities are being impacted by global change worldwide. Experiments are a powerful tool to understand how global change will impact communities by comparing control and treatment replicates. Communities consist of multiple species, and their associated abundances make multivariate methods an effective approach to study community compositional differences between control and treated replicates. Dissimilarity metrics are a commonly employed multivariate measure of compositional differences; however, while highly informative, dissimilarity metrics do not elucidate the specific ways in which communities differ. Integrating two multivariate methods, dissimilarity metrics and rank abundance curves (RACs), have the potential to detect complex differences based on dissimilarity metrics and detail the how these differences came about through differences in richness, evenness, species ranks, or species identity. Here we use a database of 106 global change experiments located in herbaceous ecosystems and explore how patterns of ordinations based on dissimilarity metrics relate to RAC-based differences. We find that combining dissimilarity metrics alongside RAC-based measures clarifies how global change treatments are altering communities. We find that when there is no difference in community composition (no distance between centroids of control and treated replicates), there are rarely differences in species ranks or species identities and more often differences in richness or evenness alone. In contrast, when there are differences between centroids of control and treated replicates, this is most often associated with differences in ranks either alone or co-occurring with differences in richness, evenness, or species identities. We suggest that integrating these two multivariate measures of community composition results in a deeper understanding of how global change impacts communities.

Cite

CITATION STYLE

APA

Avolio, M. L., Komatsu, K. J., Koerner, S. E., Grman, E., Isbell, F., Johnson, D. S., … Zhang, Y. (2022). Making sense of multivariate community responses in global change experiments. Ecosphere, 13(10). https://doi.org/10.1002/ecs2.4249

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free