Inducible slc7a7 knockout mouse model recapitulates lysinuric protein intolerance disease

20Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Lysinuric protein intolerance (LPI) is a rare autosomal disease caused by defective cationic amino acid (CAA) transport due to mutations in SLC7A7, which encodes for the y+LAT1 transporter. LPI patients suffer from a wide variety of symptoms, which range from failure to thrive, hyperammonemia, and nephropathy to pulmonar alveolar proteinosis (PAP), a potentially life-threatening complication. Hyperammonemia is currently prevented by citrulline supplementation. However, the full impact of this treatment is not completely understood. In contrast, there is no defined therapy for the multiple reported complications of LPI, including PAP, for which bronchoalveolar lavages do not prevent progression of the disease. The lack of a viable LPI model prompted us to generate a tamoxifen-inducible Slc7a7 knockout mouse (Slc7a7−/−). The Slc7a7−/− model resembles the human LPI phenotype, including malabsorption and impaired reabsorption of CAA, hypoargininemia and hyperammonemia. Interestingly, the Slc7a7−/− mice also develops PAP and neurological impairment. We observed that citrulline treatment improves the metabolic derangement and survival. On the basis of our findings, the Slc7a7−/− model emerges as a promising tool to further study the complexity of LPI, including its immune-like complications, and to design evidence-based therapies to halt its progression.

Cite

CITATION STYLE

APA

Bodoy, S., Sotillo, F., Espino-Guarch, M., Sperandeo, M. P., Ormazabal, A., Zorzano, A., … Palacín, M. (2019). Inducible slc7a7 knockout mouse model recapitulates lysinuric protein intolerance disease. International Journal of Molecular Sciences, 20(21). https://doi.org/10.3390/ijms20215294

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free