We have studied the transcriptional behavior of the mouse mammary tumor virus long repeat (MMTV-LTR) promoter during a prolonged exposure to glucocorticoids. When integrated into XC-derived cells, MMTV-LTR expression reached its maximum during the first day of dexamethasone treatment, but longer exposure to the hormone resulted in the deactivation of the promoter. In contrast, glucocorticoid-responsive resident genes or MMTV-based transiently transfected plasmids maintained or even increased their mRNA levels during the same period of hormone treatment. An integrated chimeric construct containing the hormone-responsive elements from MMTV-LTR but in different sequence context became also deactivated after a prolonged hormone treatment but with a deactivation kinetics significantly slower than constructs containing the entire, chromatin-positioning MMTV-LTR sequence. The decrease on MMTV-LTR-driven transcription was concomitant with a parallel closure of the MMTV-LTR chromatin and with a decrease in glucocorticoid receptor (GR) concentration in the cell. We concluded that the chromatin- organized MMTV-LTR promoter is particularly sensitive to any decrease on GR levels. We propose that chromatin structure may contribute decisively to the differential expression of MMTV-LTR by two mechanisms: limiting MMTV-LTR accessibility to activating transcription factors and accelerating its shutting down upon a decrease on GR levels.
CITATION STYLE
Boronat, S., Richard-Foy, H., & Piña, B. (1997). Specific deactivation of the mouse mammary tumor virus long terminal repeat promoter upon continuous hormone treatment. Journal of Biological Chemistry, 272(35), 21803–21810. https://doi.org/10.1074/jbc.272.35.21803
Mendeley helps you to discover research relevant for your work.