Sirtuin 1 (SIRT1) is known to play a role in a variety of tumorigenesis processes by deacetylating histone and non-histone proteins; however, antitumour effects by suppressing SIRT1 activity in non-small cell lung cancer (NSCLC) remain unclear. This study was designed to scrutinize clinicopathological significance of SIRT1 in NSCLC and investigate effects of metformin on SIRT1 inhibition. This study also evaluated new possibilities of drug combination using a SIRT1 inhibitor, tenovin-6, in NSCLC cell lines. It was found that SIRT1 was overexpressed in 300 (62%) of 485 formalin-fixed paraffin-embedded NSCLC tissues. Its overexpression was significantly associated with reduced overall survival and poor recurrence-free survival after adjusted for histology and pathologic stage. Thus, suppression of SIRT1 expression may be a reasonable therapeutic strategy for NSCLC. Metformin in combination with tenovin-6 was found to be more effective in inhibiting cell growth than either agent alone in NSCLC cell lines with different liver kinase B1 (LKB1) status. In addition, metformin and tenovin-6 synergistically suppressed SIRT1 expression in NSCLC cells regardless of LKB1 status. The marked reduction in SIRT1 expression by combination of metformin and tenovin-6 increased acetylation of p53 at lysine 382 and enhanced p53 stability in LKB1-deficient A549 cells. The combination suppressed SIRT1 promoter activity more effectively than either agent alone by up-regulating hypermethylation in cancer 1 (HIC1) binding at SIRT1 promoter. Also, suppressed SIRT1 expression by the combination synergistically induced caspase-3-dependent apoptosis. The study concluded that metformin with tenovin-6 may enhance antitumour effects through LKB1-independent SIRT1 down-regulation in NSCLC cells.
CITATION STYLE
Lee, B. B., Kim, Y., Kim, D., Cho, E. Y., Han, J., Kim, H. K., … Kim, D. H. (2019). Metformin and tenovin-6 synergistically induces apoptosis through LKB1-independent SIRT1 down-regulation in non-small cell lung cancer cells. Journal of Cellular and Molecular Medicine, 23(4), 2872–2889. https://doi.org/10.1111/jcmm.14194
Mendeley helps you to discover research relevant for your work.