Catalytic Cracking of n-Dodecane to Chemicals: Effect of Variable-Morphological ZSM-5 Zeolites Synthesized Using Various Silica Sources

15Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This study emphasizes tuning the synthesis conditions of MFI zeolites to achieve better catalytic properties by optimizing the mesoporosity, the balance between Brønsted and Lewis sites, and the zeolite particle sizes. The MFI zeolites were hydrothermally synthesized at various temperatures employing different silica sources. The synthesis temperature was varied between 110 to 180 °C at constant synthesis time (15 h). Different silicon sources led to variations in structure, morphology, and size of the MFI zeolite along with tuned Lewis and Brønsted acid sites in parallel correlation with shape selectivity of the reaction. The catalytic activities of synthesized zeolites were investigated in the catalytic cracking of n-dodecane to produce value-Added chemicals. The zeolite synthesized at 180 °C using fumed silica presented the highest catalytic conversion (96.6%), while maximum light olefin gaseous products (73.1%) were obtained for the sample synthesized at 140 °C using tetraethyl orthosilicate as the silica source. The MFI zeolite synthesized at 180 °C employing tetraethyl orthosilicate as a silica source facilitated the formation of both naphthenes and aromatics (71.3%) as major liquid products.

Cite

CITATION STYLE

APA

Sanhoob, M. A., Shafei, E. N., Khan, A., Nasser, G. A., Bakare, I., Muraza, O., … Ummer, A. C. (2022). Catalytic Cracking of n-Dodecane to Chemicals: Effect of Variable-Morphological ZSM-5 Zeolites Synthesized Using Various Silica Sources. ACS Omega, 7(12), 10317–10329. https://doi.org/10.1021/acsomega.1c06882

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free