Although the anti-inflammatory actions of glucocorticoids (GCs) are well established in the periphery, these stress hormones can increase inflammation under some circumstances in the brain. The transcription factor nuclear factor-κB (NF-κB), which is inhibited by GCs, regulates numerous genes central to inflammation. In this study, the effects of stress, GCs, and NMDA receptors on lipopolysaccharide (LPS)-induced activation of NF-κB in the brain were investigated. One day after chronic unpredictable stress (CUS), nonstressed and CUS rats were treated with saline or LPS and killed 2 h later. CUS potentiated the increase in LPS-induced activation of NF-κB in frontal cortex and hippocampus but not in the hypothalamus. This stress effect was blocked by pretreatment of rats with RU-486, an antagonist of the GC receptor. MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate], an NMDA receptor antagonist, also reduced the effect of LPS in all three brain regions. However, the combined antagonism of both GC and NMDA receptors produced no further reduction in NF-κB activation when compared with the effect of each treatment alone. Our results indicate that stress, via GC secretion, can increase LPS-induced NF-κB activation in the frontal cortex and hippocampus, agreeing with a growing literature demonstrating proinflammatory effects of GCs. Copyright © 2006 Society for Neuroscience.
CITATION STYLE
Munhoz, C. D., Lepsch, L. B., Kawamoto, E. M., Malta, M. B., De Sá Lima, L., Avellar, M. C. W., … Scavone, C. (2006). Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-κB in the frontal cortex and hippocampus via glucocorticoid secretion. Journal of Neuroscience, 26(14), 3813–3820. https://doi.org/10.1523/JNEUROSCI.4398-05.2006
Mendeley helps you to discover research relevant for your work.