Influence of fragment size on the time and temperature of ethylene vinyl acetate lamination decomposition in the photovoltaic module recycling process

11Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

Abstract

Photovoltaics is a commercially available and reliable technology with significant potential for long-term growth in nearly all global regions. Several research institutes and companies are working on recycling concepts for thin film modules and modules with crystalline cells. The establishment of recycling and reuse technologies appropriate and applicable to all photovoltaics (PV) modules is a key issue to be addressed as part of corporate social responsibility to safeguard the environment and to implement a fully material-circulated society without any waste. The copolymer ethylene-vinyl acetate (EVA) layer is a thermoplastic containing cross-linkable ethylene vinyl acetate, which is used to encapsulate the photovoltaic cells. The cells are laminated between films of EVA in a vacuum, under compression, and up to 150°C The encapsulant's primary purpose is to bond or laminate the multiple layers of the module together. In the photovoltaic module recycling process, the second important step (after mechanical dismantling of the frame) is EVA lamination removal. In this study, different parameters of the thermal delamination method used during the recycling process were experimentally tested and compared, and the most ecological and economical one is proposed.

Author supplied keywords

Cite

CITATION STYLE

APA

Kuczyńska-Łazewska, A., & Klugmann-Radziemska, E. (2019). Influence of fragment size on the time and temperature of ethylene vinyl acetate lamination decomposition in the photovoltaic module recycling process. Materials, 12(18). https://doi.org/10.3390/ma12182857

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free