Immunosuppression is critical for tumor growth and metastasis as well as obstacle to effective immunotherapy. Here, we demonstrate that host deficiency in caveolin-2, a member of caveolin protein family, increases M1-polarized tumor-associated macrophage (TAM) and CD8 T cell infiltration into subcutaneously implanted murine lung carcinoma tumors. Importantly, increase in M1 TAM-specific markers and cytokines occurs prior to increased numbers of tumor-infiltrating CD8 T cells and tumor regression in caveolin-2 deficient mice, suggesting that an early increase in M1 TAMs is a novel mechanism, via which host deficiency in caveolin-2 inhibits tumor growth. Consistent with the latter, transfer and co-injection of caveolin-2 deficient bone marrow (origin of TAMs) suppresses tumor growth and increases numbers of M1-polarized TAMs in wild type mice. Collectively, our data suggest that lung cancer cells use caveolin-2 expressed in bone marrow-derived cell types including TAMs to promote tumor growth via suppressing the anti-tumor immune response and that caveolin-2 could be a potential target for cancer immunotherapy.
CITATION STYLE
Liu, Y., Qi, X., Li, G., & Sowa, G. (2019). Caveolin-2 deficiency induces a rapid anti-tumor immune response prior to regression of implanted murine lung carcinoma tumors. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-55368-4
Mendeley helps you to discover research relevant for your work.