Sulconazole-Loaded Solid Lipid Nanoparticles for Enhanced Antifungal Activity: In Vitro and In Vivo Approach

9Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Solid lipid nanoparticles (SLNs) have the advantages of a cell-specific delivery and sustained release of hydrophobic drugs that can be exploited against infectious diseases. The topical delivery of hydrophobic drugs needs pharmaceutical strategies to enhance drug permeation, which is a challenge faced by conventional formulations containing a drug suspended in gel, creams or ointments. We report the fabrication and optimization of SLNs with sulconazole (SCZ) as a model hydrophobic drug and then a formulation of an SLN-based topical gel against fungal infections. The SLNs were optimized through excipients of glyceryl monostearate and Phospholipon® 90 H as lipids and tween 20 as a surfactant for its size, drug entrapment and sustained release and resistance against aggregation. The SCZ-SLNs were physically characterized for their particle size (89.81 ± 2.64), polydispersity index (0.311 ± 0.07), zeta potential (−26.98 ± 1.19) and encapsulation efficiency (86.52 ± 0.53). The SCZ-SLNs showed sustained release of 85.29% drug at the 12 h timepoint. The TEM results demonstrated spherical morphology, while DSC, XRD and FTIR showed the compatibility of the drug inside SLNs. SCZ-SLNs were incorporated into a gel using carbopol and were further optimized for their rheological behavior, pH, homogeneity and spreadability on the skin. The antifungal activity against Candida albicans and Trichophyton rubrum was increased in comparison to a SCZ carbopol-based gel. In vivo antifungal activity in rabbits presented faster healing of skin fungal infections. The histopathological examination of the treated skin from rabbits presented restoration of the dermal architecture. In summary, the approach of formulating SLNs into a topical gel presented an advantageous drug delivery system against mycosis.

Cite

CITATION STYLE

APA

Samee, A., Usman, F., Wani, T. A., Farooq, M., Shah, H. S., Javed, I., … Kausar, S. (2023). Sulconazole-Loaded Solid Lipid Nanoparticles for Enhanced Antifungal Activity: In Vitro and In Vivo Approach. Molecules, 28(22). https://doi.org/10.3390/molecules28227508

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free