Development of Split-Protein Systems: From Binary to Ternary System

  • Shen S
N/ACitations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Tens of thousands of protein-protein interactions (PPIs) have been found in human cells and many of these macromolecular partnerships could determine the cell growth and death. Thus there is a need to develop the methods to catalogue these macromolecules by detecting their interactions, modifications, and cellular locations. It will be helpful for scientists to compare the difference between a diseased cellular state and its normal state and to find the potential therapy treatment to intervene this status. One technology called split-protein reassembly or protein fragment complementation has been developed in the last two decades. This technology makes use of appropriate fragmentation of some protein reporters and the refolding of these reports could be detected by their function to confirm the interaction of interest. This system has been set up in cell-free systems, E. coli, yeast, mammalian cells, plants and live animals. Herein, I present the development in fluorescence- and bioluminescence-based split-protein biosensors in both binary and ternary systems. In addition, some people developed the split-protein system by combining it with chemical inducer of dimerization strategy (CID). This has been applied for identifying the enzyme inhibitors and regulating the activity of protein kinases and phosphatases. With effort from many laboratories from the world, a variety of split-protein systems have been developed for studying the PPI in vitro and in vivo, monitoring the biological process, and controlling the activity of the enzyme of interest.

Cite

CITATION STYLE

APA

Shen, S. (2021). Development of Split-Protein Systems: From Binary to Ternary System. Advances in Bioscience and Biotechnology, 12(03), 78–94. https://doi.org/10.4236/abb.2021.123006

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free