Study of the TmoS/TmoT two-component system: Towards the functional characterization of the family of TodS/TodT like systems

20Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The two-component system TmoS/TmoT controls the expression of the toluene-4-monooxygenase pathway in Pseudomonas mendocina RK1 via modulation of PtmoX activity. The TmoS/TmoT system belongs to the family of TodS/TodT like proteins. The sensor kinase TmoS is a 108kDa protein composed of seven different domains. Using isothermal titration calorimetry we show that purified TmoS binds a wide range of aromatic compounds with high affinities. Tightest ligand binding was observed for toluene (KD=150nM), which corresponds to the highest affinity measured between an effector and a sensor kinase. Other compounds with affinities in the nanomolar range include benzene, the 3 xylene isomers, styrene, nitrobenzene or p-chlorotoluene. We demonstrate that only part of the ligands that bind to TmoS increase protein autophosphorylation in vitro and consequently pathway expression in vivo. These compounds are referred to as agonists. Other TmoS ligands, termed antagonists, failed to increase TmoS autophosphorylation, which resulted in their incapacity to stimulate gene expression in vivo. We also show that TmoS saturated with different agonists differs in their autokinase activities. The effector screening of gene expression showed that promoter activity of PtmoX and PtodX (controlled by the TodS/TodT system) is mediated by the same set of 22 compounds. The common structural feature of these compounds is the presence of a single aromatic ring. Among these ligands, toluene was the most potent inducer of both promoter activities. Information on the TmoS/TmoT and TodS/TodT system combined with a sequence analysis of family members permits to identify distinct features that define this protein family. © 2011 The Authors. Microbial Biotechnology © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

Cite

CITATION STYLE

APA

Silva-Jiménez, H., García-Fontana, C., Cadirci, B. H., Ramos-González, M. I., Ramos, J. L., & Krell, T. (2012). Study of the TmoS/TmoT two-component system: Towards the functional characterization of the family of TodS/TodT like systems. Microbial Biotechnology, 5(4), 489–500. https://doi.org/10.1111/j.1751-7915.2011.00322.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free