Ilexonin A is a compound isolated from the root of Ilex pubescens, a traditional Chinese medicine. Ilexonin A has been shown to play a neuroprotective role by regulating the activation of astrocytes and microglia in the peri-infarct area after ischemia. However, the effects of ilexonin A on astrocytes and microglia in the infarct-free region of the hippocampal CA1 region remain unclear. Focal cerebral ischemia models were established by 2-hour occlusion of the middle cerebral artery in rats. Ilexonin A (20, 40 or 80 mg/kg) was administered immediately after ischemia/reperfusion. The astrocyte marker glial fibrillary acidic protein, microglia marker Iba-1, neural stem cell marker nestin and inflammation markers were detected by immunohistochemistry and western blot assay. Expression levels of tumor necrosis factor-α and interleukin 1β were determined by enzyme linked immunosorbent assay in the hippocampal CA1 tissue. Astrocytes were activated immediately in progressively increasing numbers from 1, 3, to 7 days post-ischemia/reperfusion. The number of activated astrocytes further increased in the hippocampal CA1 region after treatment with ilexonin A. Microglial cells remained quiescent after ischemia/reperfusion, but became activated after treatment with ilexonin A. Ilexonin A enhanced nestin expression and reduced the expression of tumor necrosis factor-α and interleukin 1β in the hippocampus post-ischemia/reperfusion. The results of the present study suggest that ilexonin A has a neuroprotective effect in the hippocampus after ischemia/reperfusion, probably through regulating astrocytes and microglia activation, promoting neuronal stem cell proliferation and reducing the levels of pro-inflammatory factors. This study was approved by the Animal Ethics Committee of the Fujian Medical University Union Hospital, China.
CITATION STYLE
Xu, A. L., Zheng, G. Y., Ye, H. Y., Chen, X. D., & Jiang, Q. (2020). Characterization of astrocytes and microglial cells in the hippocampal CA1 region after transient focal cerebral ischemia in rats treated with Ilexonin A. Neural Regeneration Research, 15(1), 78–85. https://doi.org/10.4103/1673-5374.264465
Mendeley helps you to discover research relevant for your work.