A comprehensive review of COVID-19 detection with machine learning and deep learning techniques

11Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Purpose: The first transmission of coronavirus to humans started in Wuhan city of China, took the shape of a pandemic called Corona Virus Disease 2019 (COVID-19), and posed a principal threat to the entire world. The researchers are trying to inculcate artificial intelligence (Machine learning or deep learning models) for the efficient detection of COVID-19. This research explores all the existing machine learning (ML) or deep learning (DL) models, used for COVID-19 detection which may help the researcher to explore in different directions. The main purpose of this review article is to present a compact overview of the application of artificial intelligence to the research experts, helping them to explore the future scopes of improvement. Methods: The researchers have used various machine learning, deep learning, and a combination of machine and deep learning models for extracting significant features and classifying various health conditions in COVID-19 patients. For this purpose, the researchers have utilized different image modalities such as CT-Scan, X-Ray, etc. This study has collected over 200 research papers from various repositories like Google Scholar, PubMed, Web of Science, etc. These research papers were passed through various levels of scrutiny and finally, 50 research articles were selected. Results: In those listed articles, the ML / DL models showed an accuracy of 99% and above while performing the classification of COVID-19. This study has also presented various clinical applications of various research. This study specifies the importance of various machine and deep learning models in the field of medical diagnosis and research. Conclusion: In conclusion, it is evident that ML/DL models have made significant progress in recent years, but there are still limitations that need to be addressed. Overfitting is one such limitation that can lead to incorrect predictions and overburdening of the models. The research community must continue to work towards finding ways to overcome these limitations and make machine and deep learning models even more effective and efficient. Through this ongoing research and development, we can expect even greater advances in the future.

Cite

CITATION STYLE

APA

Das, S., Ayus, I., & Gupta, D. (2023). A comprehensive review of COVID-19 detection with machine learning and deep learning techniques. Health and Technology, 13(4), 679–692. https://doi.org/10.1007/s12553-023-00757-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free