Transfersomes are deformable vesicles that can transport drugs across difficult-to-permeate barriers in human tissues. In this work, nano-transfersomes were produced for the first time by a supercritical CO2 assisted process. Operating at 100 bar and 40 °C, different amounts of phosphatidylcholine (2000 and 3000 mg), kinds of edge activators (Span® 80 and Tween® 80), and phosphatidylcholine to edge activator weight ratio (95:5, 90:10, 80:20) were tested. Formulations prepared using Span® 80 and phosphatidylcholine at an 80:20 weight ratio produced stable transfersomes (−30.4 ± 2.4 mV ζ-potential) that were characterized by a mean diameter of 138 ± 55 nm. A prolonged ascorbic acid release of up to 5 h was recorded when the largest amount of phosphatidylcholine (3000 mg) was used. Moreover, a 96% ascorbic acid encapsulation efficiency and a quasi-100% DPPH radical scavenging activity of transfersomes were measured after supercritical processing.
CITATION STYLE
Squittieri, R., Baldino, L., & Reverchon, E. (2023). Production of Antioxidant Transfersomes by a Supercritical CO2 Assisted Process for Transdermal Delivery Applications. Nanomaterials, 13(12). https://doi.org/10.3390/nano13121812
Mendeley helps you to discover research relevant for your work.