Specificity and modulation of integrin function have important consequences for cellular responses to the extracellular matrix, including differentiation and transformation. The Ras-related GTPase, R-Ras, modulates integrin affinity, but little is known of the signaling pathways and biological functions downstream of R-Ras. Here we show that stable expression of activated R-Ras or the closely related TC21 (R-Ras 2) induced integrin- mediated migration and invasion of breast epithelial cells through collagen and disrupted differentiation into tubule structures, whereas dominant negative R-Ras had opposite effects. These results imply novel roles for R- Ras and TC21 in promoting a transformed phenotype and in the basal migration and polarization of these cells. Importantly, R-Ras induced an increase in cellular adhesion and migration on collagen but not fibronectin, suggesting that R-Ras signals to specific integrins. This was further supported by experiments in which R-Ras enhanced the migration of cells expressing integrin chimeras containing the α2, but not the α5, cytoplasmic domain. In addition, a transdominant inhibition previously noted only between integrin β cytoplasmic domains was observed for the α2 cytoplasmic domain; α2β1- mediated migration was inhibited by the expression of excess α2 but not α5 cytoplasmic domain-containing chimeras, suggesting the existence of limiting factors that bind the integrin α subunit. Using pharmacological inhibitors, we found that R-Ras induced migration on collagen through a combination of phosphatidylinositol 3-kinase and protein kinase C, but not MAPK, which is distinct from the other Ras family members, Rac, Cdc42, and N- and K-Ras. Thus, R-Ras communicates with specific integrin α cytoplasmic domains through a unique combination of signaling pathways to promote cell migration and invasion.
CITATION STYLE
Keely, P. J., Rusyn, E. V., Cox, A. D., & Parise, L. V. (1999). R-Ras signals through specific integrin α cytoplasmic domains to promote migration and invasion of breast epithelial cells. Journal of Cell Biology, 145(5), 1077–1088. https://doi.org/10.1083/jcb.145.5.1077
Mendeley helps you to discover research relevant for your work.