Multibody analysis and soft tissue strength refute supersonic dinosaur tail

5Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Sauropod dinosaurs are well known for their massive sizes and long necks and tails. Among sauropods, flagellicaudatan dinosaurs are characterized by extreme tail elongation, which has led to hypotheses regarding tail function, often compared to a whip. Here, we analyse the dynamics of motion of a 3D model of an apatosaurine flagellicaudatan tail using multibody simulation and quantify the stress-bearing capabilities of the associated soft tissues. Such an elongated and slender structure would allow achieving tip velocities in the order of 30 m/s, or 100 km/h, far slower than the speed of sound, due to the combined effect of friction of the musculature and articulations, as well as aerodynamic drag. The material properties of the skin, tendons, and ligaments also support such evidence, proving that in life, the tail would not have withstood the stresses imposed by travelling at the speed of sound, irrespective of the conjectural ‘popper’, a hypothetical soft tissue structure analogue to the terminal portion of a bullwhip able to surpass the speed of sound.

Cite

CITATION STYLE

APA

Conti, S., Tschopp, E., Mateus, O., Zanoni, A., Masarati, P., & Sala, G. (2022). Multibody analysis and soft tissue strength refute supersonic dinosaur tail. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-21633-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free