High magnetic field phase diagram in electron-doped manganites La 0.4Ca0.6Mn1-yCryO3

20Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We report the charge-order to ferromagnetic phase transition induced by pulsed high magnetic field and impurity doping effects in manganites La 0.4 Ca 0.6 (Mn 1a ̂'y Cr y)O 3 (0 a ‰ y a ‰ 0.2). Significant charge-order suppression and ferromagnetic tendency upon the Cr 3+ -doping are evidenced, and three different ground states are identified, namely the charge-order state, the phase separated state, and the spin-glass like state. Phase diagram in the H-y plane at 4.2a €...K is determined by the high magnetic field study, in which the charge-order and ferromagnetic phase boundary is clearly figured out. The critical magnetic field for melting the charge-order phase of La 0.4 Ca 0.6 MnO 3 is revealed to reach up to 46a €...T at 4.2a €...K. Interestingly, distinct responses of the three states to the high magnetic field are observed, indicating the special physics regarding the charge order melting process in each state. The mechanism of the doping induced charge-order suppression and ferromagnetism promotion can be understood by the competition between the antiferromagnetic interaction of Cr-Mn and local enhancement of electron hopping by Cr 3+.

Cite

CITATION STYLE

APA

Lu, C., Hu, N., Yang, M., Xia, S., Wang, H., Wang, J., … Liu, J. M. (2014). High magnetic field phase diagram in electron-doped manganites La 0.4Ca0.6Mn1-yCryO3. Scientific Reports, 4. https://doi.org/10.1038/srep04902

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free