Trial-to-trial, uncertainty-based adjustment of decision boundaries in visual categorization

42Citations
Citations of this article
168Readers
Mendeley users who have this article in their library.

Abstract

Categorization is a cornerstone of perception and cognition. Computationally, categorization amounts to applying decision boundaries in the space of stimulus features. We designed a visual categorization task in which optimal performance requires observers to incorporate trial-to-trial knowledge of the level of sensory uncertainty when setting their decision boundaries. We found that humans and monkeys did adjust their decision boundaries from trial to trial as the level of sensory noise varied, with some subjects performing near optimally. We constructed a neural network that implements uncertainty-based, near-optimal adjustment of decision boundaries. Divisive normalization emerges automatically as a key neural operation in this network. Our results offer an integrated computational and mechanistic framework for categorization under uncertainty.

Cite

CITATION STYLE

APA

Qamar, A. T., Cotton, R. J., George, R. G., Beck, J. M., Prezhdo, E., Laudano, A., … Ma, W. J. (2013). Trial-to-trial, uncertainty-based adjustment of decision boundaries in visual categorization. Proceedings of the National Academy of Sciences of the United States of America, 110(50), 20332–20337. https://doi.org/10.1073/pnas.1219756110

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free