Detecting Wear and Tear in Pedestrian Crossings Using Computer Vision Techniques: Approaches, Challenges, and Opportunities

1Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Pedestrian crossings are an essential part of the urban landscape, providing safe passage for pedestrians to cross busy streets. While some are regulated by timed signals and are marked with signs and lights, others are simply marked on the road and do not have additional infrastructure. Nevertheless, the markings undergo wear and tear due to traffic, weather, and road maintenance activities. If pedestrian crossing markings are excessively worn, drivers may not be able to see them, which creates road safety issues. This paper presents a study of computer vision techniques that can be used to identify and classify pedestrian crossings. It first introduces the related concepts. Then, it surveys related work and categorizes existing solutions, highlighting their key features, strengths, and limitations. The most promising techniques are identified and described: Convolutional Neural Networks, Histogram of Oriented Gradients, Maximally Stable Extremal Regions, Canny Edge, and thresholding methods. Their performance is evaluated and compared on a custom dataset developed for this work. Insights on open issues and research opportunities in the field are also provided. It is shown that managers responsible for road safety, in the context of a smart city, can benefit from computer vision approaches to automate the process of determining the wear and tear of pedestrian crossings.

Cite

CITATION STYLE

APA

Rosa, G. J. M., Afonso, J. M. S., Gaspar, P. D., Soares, V. N. G. J., & Caldeira, J. M. L. P. (2024, March 1). Detecting Wear and Tear in Pedestrian Crossings Using Computer Vision Techniques: Approaches, Challenges, and Opportunities. Information (Switzerland). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/info15030169

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free