A sliding window method for detecting corners of openings from terrestrial LiDAr data

9Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Architectural building models (LoD3) consist of detailed wall and roof structures including openings, such as doors and windows. Openings are usually identified through corner and edge detection, based on terrestrial LiDAR point clouds. However, singular boundary points are mostly detected by analysing their neighbourhoods within a small search area, which is highly sensitive to noise. In this paper, we present a global-wide sliding window method on a projected façade to reduce the influence of noise. We formulate the gradient of point density for the sliding window to inspect the change of façade elements. With derived symmetry information from statistical analysis, border lines of the changes are extracted and intersected generating corner points of openings. We demonstrate the performance of the proposed approach on the static and mobile terrestrial LiDAR data with inhomogeneous point density. The algorithm detects the corners of repetitive and neatly arranged openings and also recovers angular points within slightly missing data areas. In the future we will extend the algorithm to detect disordered openings and assist to façade modelling, semantic labelling and procedural modelling.

Cite

CITATION STYLE

APA

Li, J., Xiong, B., Biljecki, F., & Schrotter, G. (2018). A sliding window method for detecting corners of openings from terrestrial LiDAr data. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (Vol. 42, pp. 97–103). International Society for Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprs-archives-XLII-4-W10-97-2018

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free