Capacitorless Two-Transistor Dynamic Random-Access Memory Cells Comprising Amorphous Indium–Tin–Gallium–Zinc Oxide Thin-Film Transistors for the Multiply–Accumulate Operation

1Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Capacitorless two-transistor (2T0C) dynamic random-access memory (DRAM) cells comprising oxide thin-film transistors (TFTs) show potential as low-power and high-density DRAM cells; however, the multiply–accumulate (MAC) operation using these cells is not yet realized. In this study, 2T0C DRAM cells comprising amorphous indium–tin–gallium–zinc oxide TFTs are fabricated for MAC operations. In a 2T0C DRAM cell, one transistor acts as a write transistor and the other as a read transistor, whose gate capacitance corresponds to the data storage capacitance. The cells have a long retention time of 1000 s, which is 104 times longer than that of conventional DRAM cells, owing to the extremely low leakage current of the TFTs (1.11 × 10−18 A µm−1). These cells satisfy the original condition for synaptic devices, in which a proportional relationship exists between the input and output. The MAC operation is performed using two cells. This study demonstrates the usefulness of oxide TFTs in artificial neural networks.

Cite

CITATION STYLE

APA

Ryu, S., Kang, M., Cho, K., & Kim, S. (2024). Capacitorless Two-Transistor Dynamic Random-Access Memory Cells Comprising Amorphous Indium–Tin–Gallium–Zinc Oxide Thin-Film Transistors for the Multiply–Accumulate Operation. Advanced Materials Technologies, 9(15). https://doi.org/10.1002/admt.202302209

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free