Skip to main content

Third workshop on recommendation in complex scenarios (ComplexreC 2019)

ISSN: 16130073
0Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.

Abstract

Over the past decade, recommendation algorithms for ratings prediction and item ranking have steadily matured. However, these state-of-the-art algorithms are typically applied in relatively straightforward and static scenarios: given information about a user's past item preferences in isolation, can we predict whether they will like a new item or rank all unseen items based on predicted interest? In reality, recommendation is often a more complex problem: the evaluation of a list of recommended items never takes place in a vacuum, and it is often a single step in the user's more complex background task or need. The goal of the ComplexRec 2019 workshop is to offer an interactive venue for discussing approaches to recommendation in complex scenarios that have no simple one-size-fits-all solution.

Author supplied keywords

Cite

CITATION STYLE

APA

Koolen, M., Mobasher, B., Bogers, T., & Tuzhilin, A. (2019). Third workshop on recommendation in complex scenarios (ComplexreC 2019). In CEUR Workshop Proceedings (Vol. 2449, pp. 1–3). CEUR-WS.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free