Over the past 9,150 years, at least 9 flank collapses have been identified in the history of La Soufrière of Guadeloupe volcano. On account of the volcano’s current unrest, the possibility of such a flank collapse should not be dismissed in assessing hazards for future eruptive magmatic as well as non-magmatic scenarios. We combine morphological and geophysical data to identify seven unstable structures (volumes ranging from 1 × 106 m3 to 100 × 106 m3), including one that has a volume compatible with the last recorded flank collapse in 1530 CE. We model their dynamics and emplacement with the SHALTOP numerical model and a simple Coulomb friction law. The best-fit friction coefficient to reproduce the 1530 CE event is tan(7°) = 0.13, suggesting the transformation of the debris avalanche into a debris flow, which is confirmed by the texture of mapped deposits. Various friction angles are tested to investigate less water-rich and less mobile avalanches. The most densely populated areas of Saint-Claude and Basse-Terre, and an area of Gourbeyre south of the Palmiste ridge, are primarily exposed in the case of the more voluminous and mobile flank collapse scenarios considered. However, topography has a prominent role in controlling flow dynamics, with barrier effects and multiple channels. Classical mobility indicators, such as the Heim’s ratio, are thus not adequate for a comprehensive hazard analysis.
CITATION STYLE
Peruzzetto, M., Komorowski, J. C., Le Friant, A., Rosas-Carbajal, M., Mangeney, A., & Legendre, Y. (2019). Modeling of partial dome collapse of La Soufrière of Guadeloupe volcano: implications for hazard assessment and monitoring. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-49507-0
Mendeley helps you to discover research relevant for your work.