Fabrication of a porous NiFeP/Ni electrode for highly efficient hydrazine oxidation boosted H2evolution

28Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Rational optimization of the surface electronic states and physical structures of non-noble metal nanomaterials is essential to improve their electrocatalytic performance. Herein, we report a facile dual-regulation strategy to fabricate NiFeP/Ni (P-NiFeP/Ni) porous nanoflowers, which involves Fe-doping and creating pores on nanosheets. The as-prepared P-NiFeP/Ni has a hierarchically porous surface, which exposes more electrochemically active sites and dramatically enhances the electron transfer rate. Thus, it exhibits excellent catalytic activity in both anodic hydrazine oxidation reaction (HzOR) and cathodic hydrogen evolution reaction (HER). Interestingly, the coupled electrolysis cell only offers a potential of 0.162 V at 10 mA cm-2 to enable HzOR boosted H2 evolution, highlighting an energy-saving hydrogen evolution strategy.

Cite

CITATION STYLE

APA

Wang, H., & Tao, S. (2021). Fabrication of a porous NiFeP/Ni electrode for highly efficient hydrazine oxidation boosted H2evolution. Nanoscale Advances, 3(8), 2280–2286. https://doi.org/10.1039/d1na00043h

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free