GATA transcription factors: Basic principles and related human disorders

57Citations
Citations of this article
80Readers
Mendeley users who have this article in their library.

Abstract

The development of mature blood cell from hematopoietic stem cells is regulated by transcription factors that coordinate the expression of lineage-specific genes. GATA transcription factors are zinc finger DNA-binding proteins that play crucial roles in various biological processes, including hematopoiesis. Among GATA family proteins, GATA-1, GATA-2, and GATA-3 are essential for hematopoiesis. GATA-1 functions to promote development of erythrocytes, megakaryocytes, eosinophils, and mast cells. Mutations in GATA-1 are associated with acute megakaryoblastic leukemia (AMKL), congenital erythroid hypoplasia (Diamond-Blackfan anemia; DBA), and X-linked anemia and/or thrombocytopenia. Conversely, GATA-2 functions early in hematopoiesis and is required for maintenance and expansion of hematopoietic stem cells (HSCs) and/or multipotent progenitors. GATA-2 mutations are associated with immunodeficiency, lymphedema, myelodysplastic syndrome (MDS), and leukemia. Furthermore, decreased GATA-2 expression may contribute to the pathophysiology of aplastic anemia. GATA-3 has an important role in T cell development, and has been suggested to be involved in the pathophysiology of acute lymphoblastic leukemias. This review summarizes current knowledge on hematological disorders associated with GATA-1 and GATA-2 mutations.

Cite

CITATION STYLE

APA

Fujiwara, T. (2017, June 1). GATA transcription factors: Basic principles and related human disorders. Tohoku Journal of Experimental Medicine. Tohoku University Medical Press. https://doi.org/10.1620/tjem.242.83

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free