Plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of tissue-type plasminogen activator (t-PA) and urokinase plasminogen activator, is an important regulator of the blood fibrinolytic system. Elevated plasma levels of PAI-1 are associated with thrombosis, and high levels of PAI-1 within platelet-rich clots contribute to their resistance to lysis by t-PA. Consequently, strategies aimed at inhibition of PAI-1 may prove clinically useful. This study was designed to test the hypothesis that a 14-amino acid peptide, corresponding to the PAI-1 reactive center loop (residues 333-346), can rapidly inhibit PAI-1 function. PAI-1 (0.7 μM) was incubated with peptide (55 μM) at 37°C. At timed intervals, residual PAI-1 activity was determined by addition of reaction mixture samples to t-PA and chromogenic substrate. The T( 1/2 ) of PAI-1 activity in the presence of peptide was 4±3 min compared to a control T( 1/2 ) of 98±18 min. The peptide also inhibited complex formation between PAI-1 and t-PA as demonstrated by SDS-PAGE analysis. However, the capacity of the peptide to inhibit PAI-1 bound to vitronectin, a plasma protein that stabilizes PAI-1 activity, was markedly attenuated. Finally, the peptide significantly enhanced in vitro lysis of platelet-rich clots and platelet-poor clots containing recombinant PAI-1. These results indicate that a 14-amino acid peptide can rapidly inactivate PAI-1 and accelerate fibrinolysis in vitro. These studies also demonstrate that PAI-1 function can be directly attenuated in a physiologic setting and suggest a novel approach for augmenting fibrinolysis in vivo.
CITATION STYLE
Eitzman, D. T., Fay, W. P., Lawrence, D. A., Francis-Chmura, A. M., Shore, J. D., Olson, S. T., & Ginsburg, D. (1995). Peptide-mediated inactivation of recombinant and platelet plasminogen activator inhibitor-1 in vitro. Journal of Clinical Investigation, 95(5), 2416–2420. https://doi.org/10.1172/JCI117937
Mendeley helps you to discover research relevant for your work.