Rosiglitazone alleviates lipopolysaccharide‑induced inflammation in RAW264.7 cells via inhibition of NF‑κB and in a PPARγ‑dependent manner

  • Zhou J
  • Yang X
  • Song Y
  • et al.
N/ACitations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Rosiglitazone is a synthetic peroxisome proliferator-activated receptor (PPAR)γ agonist widely used for the treatment of type 2 diabetes. Recent studies have demonstrated that rosiglitazone displays anti-inflammatory effects. The present study aimed to investigate whether rosiglitazone alleviates decreases in RAW264.7 cell viability resulting from lipopolysaccharide (LPS)-induced inflammation, as well as exploring the underlying mechanism. A macrophage inflammatory injury model was established by treating RAW264.7 cells with 100 ng/ml LPS. Cells were divided into LPS and rosiglitazone groups with different concentrations. Cell viability was assessed by performing an MTT assay. The expression of inflammatory cytokines was detected by conducting enzyme-linked immunosorbent assays and reverse transcription-quantitative PCR. Nitric oxidesecretion was assessed using the Griess reagent system. The expression levels of key nuclear factor-κB pathway-associated proteins were detected via western blotting. Rosiglitazone alleviated LPS-induced decrease in RAW264.7 cell viability and inhibited inflammatory cytokine expression in a concentration-dependent manner. Rosiglitazone significantly inhibited LPS-induced upregulation of p65 phosphorylation levels and downregulated IκBα expression levels. However, rosiglitazone-mediated inhibitory effects were reversed by PPARγ knockdown. The results of the present study demonstrated that rosiglitazone significantly inhibited LPS-induced inflammatory responses in RAW264.7 macrophage cells, which was dependent on PPARγ activation and NF-κB suppression.

Cite

CITATION STYLE

APA

Zhou, J.-P., Yang, X.-N., Song, Y., Zhou, F., Liu, J.-J., Hu, Y.-Q., & Chen, L.-G. (2021). Rosiglitazone alleviates lipopolysaccharide‑induced inflammation in RAW264.7 cells via inhibition of NF‑κB and in a PPARγ‑dependent manner. Experimental and Therapeutic Medicine, 22(1). https://doi.org/10.3892/etm.2021.10175

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free