Algoritmos genéticos aplicados a la optimización de características en la clasificación de arritmias cardiacas utilizando los clasificadores KNN y naive Bayes

  • Padilla-Navarro C
  • González-Reyna S
  • Aguilera-González G
  • et al.
N/ACitations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Many deaths in the world happen as a result of cardiovascular diseases. The proposed method combines metaheuristic – Genetic Algorithms (AG) – and the KNN and Naive Bayes classifiers. The tests were performed through a database of the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) [1]. Metaheuristics are implemented to improve the performance of classifiers. Experimental results show that up to 94 % accuracy is achieved in the classification.

Cite

CITATION STYLE

APA

Padilla-Navarro, C., González-Reyna, S., Aguilera-González, G., Ortega-Yepez, M., Bombela-Jiménez, S., Rangel-Huerta, M., & Lino-Ramírez, C. (2017). Algoritmos genéticos aplicados a la optimización de características en la clasificación de arritmias cardiacas utilizando los clasificadores KNN y naive Bayes. Research in Computing Science, 134(1), 55–68. https://doi.org/10.13053/rcs-134-1-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free