Fatty acids, cholesterol, and phospholipids are amphiphilic compounds of biological interest, which form ordered monolayers mimicking biomembranes, and can be studied with the Langmuir technique using surface pressure-area isotherms and compressibility plots. Proteins are also components of biomembranes or are present in body fluids. In this study, the influence of lysozyme on different films of a fatty acid (stearic acid or oleic acid), cholesterol, a phospholipid (dipalmitoylphosphatidylcholine, DPPC, or palmitoyloleoylphosphatidylcholine, POPC), and mixtures of them is presented using a 0.9% saline solution as subphase. Results show that the presence of lysozyme alters the lipid monolayer formation in an important way at the beginning (low surface pressures) and the middle (intermediate surface pressures) parts of the isotherm. At high surface pressures, the phospholipids DPPC and POPC and the saturated fatty acid, stearic acid, expel lysozyme from the surface, while oleic acid and cholesterol permit the presence of lysozyme on it. The mixtures of oleic acid-DPPC also expel lysozyme from the surface at high surface pressures, while mixtures of oleic acid-POPC and cholesterol-POPC permit the presence of lysozyme on it. The compressibility of the monolayer is affected in all cases, with an important reduction in the elastic modulus values and an increase in the fluidity, especially at low and intermediate surface pressures.
CITATION STYLE
Torrent-Burgués, J. (2022). Lysozyme Influence on Monolayers of Individual and Mixed Lipids. Colloids and Interfaces, 6(1). https://doi.org/10.3390/colloids6010015
Mendeley helps you to discover research relevant for your work.