An important goal for LIGO (the Laser Interferometer Gravitational-Wave Observatory) and Virgo is to find periodic sources of gravitational waves. The LIGO and Virgo detectors are sensitive to a variety of noise of non-astrophysical origin, such as instrumental artifacts and environmental disturbances. These artifacts make it difficult to know when a signal is due to a gravitational wave or noise. A continuous wave search algorithm, Fscan, and the calculation of the coherence between the gravitational wave channels and auxiliary channels has been developed to identify the source of noise lines. The programs analyze data from the gravitational wave channels as well as environmental sensors, searching for significant lines that appear in coincidence (using various thresholds and frequency windows) in the gravitational wave channel as well the environmental monitors. By this method, the source of powerful signals at specific frequencies in the gravitational wave channel caused by noise can be determined. Examples from LIGO's sixth science run, S6, and Virgo's second scientific run, VSR2, are presented. © 2010 IOP Publishing Ltd.
CITATION STYLE
Coughlin, M. (2010). Noise line identification in LIGO S6 and Virgo VSR2. In Journal of Physics: Conference Series (Vol. 243). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/243/1/012010
Mendeley helps you to discover research relevant for your work.