Rpob mutations conferring rifampicin-resistance affect growth, stress response and motility in vibrio vulnificus

12Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Rifampicin is a broad-spectrum antibiotic that binds to the bacterial RNA polymerase (RNAP), compromising DNA transcription. Rifampicin resistance is common in several microorganisms and it is typically caused by point mutations in the gene encod-ing the β subunit of RNA polymerase, rpoB. Different rpoB mutations are responsible for various levels of rifampicin resistance and for a range of secondary effects. rpoB mutations conferring rifampicin resistance have been shown to be responsible for severe effects on transcription, cell fitness, bacterial stress response and virulence. Such effects have never been investigated in the marine pathogen Vibrio vulnificus, even though rifampicin-resistant strains of V. vulnificus have been isolated previously. Moreover, spontaneous rifampicin-resistant strains of V. vulnificus have an important role in conjugation and mutagenesis pro-tocols, with poor consideration of the effects of rpoB mutations. In this work, effects on growth, stress response and virulence of V. vulnificus were investigated using a set of nine spontaneous rifampicin-resistant derivatives of V. vulnificus CMCP6. Three different mutations (Q513K, S522L and H526Y) were identified with varying incidence rates. These three mutant types each showed high resistance to rifampicin [minimal inhibitory concentration (MIC) >800 µg ml−1], but different secondary effects. The strains carrying the mutation H526Y had a growth advantage in rich medium but had severely reduced salt stress tolerance in the presence of high NaCl concentrations as well as a significant reduction in ethanol stress resistance. Strains possessing the S522L mutation had reduced growth rate and overall biomass accumulation in rich medium. Furthermore, investigation of virulence characteristics demonstrated that all the rifampicin-resistant strains showed compromised motility when compared with the wild-type, but no major effects on exoenzyme production were observed. These findings reveal a wide range of secondary effects of rpoB mutations and indicate that rifampicin resistance is not an appropriate selectable marker for studies that aim to investigate phenotypic behaviour in this organism.

Cite

CITATION STYLE

APA

Cutugno, L., Cafferty, J. M., Pané-Farré, J., O’byrne, C., & Boyd, A. (2020). Rpob mutations conferring rifampicin-resistance affect growth, stress response and motility in vibrio vulnificus. Microbiology (United Kingdom), 166(12), 1160–1170. https://doi.org/10.1099/mic.0.000991

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free