The kiln car is widely used as a kind of transport equipment in the current ceramic industry, and it is heated to the firing temperature and cooled down to the ambient temperature with products in the tunnel kiln. And the burning of the ceramics requires a lot of energy, and the efficiency is relatively low within 30% or even less. In addition, the mass ratio between car and ware can be more than 50%. So the energy loss of car also occupies a great part in total energy consumption. In this work, a mathematical model will be created to describe the temperature distribution inside the kiln car while it travels through the tunnel kiln. All the used parameters are from real ceramic industry. The operative process is assumed as a countercurrent heat exchanger. Both the convection and radiation are considered as boundary condition in the model. Furthermore, the thermal results of car and the specific energy consumption of car in the standard case will be demonstrated. Finally, the influences of different thermal physical parameters on the energy consumption of car will be investigated, and the possible optimization measures of car are proposed through comparing the different specific energy losses.
CITATION STYLE
Zhang, Y., Wang, J., Redemann, T., & Specht, E. (2015). Thermal behavior of kiln cars while traveling through a tunnel kiln. Advances in Mechanical Engineering, 7(5), 1–8. https://doi.org/10.1177/1687814015588468
Mendeley helps you to discover research relevant for your work.